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1 Introduction

In this paper, one problem is solved for a linear loaded differential equation of parabolic type
with integral conditionsby the finite difference method. It is known that many problems of
natural science, for example, problems of mathematical physics and biology, problems of long-
term forecasting and regulation of groundwater, problems of heat and mass transfer at a finite
rate, etc. lead to problems for loaded partial differential equations. Similar problems can be
found, for example, in the works of Nakhushev (1995, 2012). Therefore, the solution of such
problems for loaded differential equations is of great interest.

Different problems for loaded differential equations have been studied by many mathemati-
cians. We can also refer the papers Dzenaliev & Ramazanov (2006), Abdullaev & Aida-Zade
(2016), Khankishiyev (2017, 2020), Agarwal et al., (2020), Parasidis et al. (2018), Islomov &
Alikulov (2021). Among the methods for solving such problems, various numerical methods are
often used. In the books of Samarsky (2001) and Samarsky & Nikolaev (1989), effective methods
for solving such problems are given, and in the work of Ashyralyev & Ahmed (2019) one specific
problem of an applied nature is solved by a numerical method.

There are problems for partial differential equations with integral conditions. Such conditions
arise when, for example, the area of application of a concentrated force has a finite size. In the
works of Khankishiev (2017, 2020) specific mixed problems were solved by the method of finite
differences for a linear loaded differential equation of parabolic and hyperbolic types with integral
conditions. In these papers, algorithms for solving the constructed difference problems are given
and their convergence is studied.
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2 Statement of the problem

The present work is devoted to solving a problem with integral conditions for the linear loaded
differential equation of parabolic type. Here we study the following problem for this equation
with a variable coefficient: to find continuous function u = wu(z,t) in closed domain D =
{0 <z <, 0<t<T}, which satisfies to equation

M= (k( >§§)+bm £ b i)+ fad), 0<a <l 0<t<T, ()

ot oz p
integral conditions
l l
/ cl(x)u(x,t)dx = M1 (t)v / CQ(.Z')U(I’,t)dZ‘ = IU'Q(t)7 0 S t S T7 (2)
0 0
and initial condition
u(z,0) =p(x), 0<x <L (3)

Here k(x) > ko > 0, f(x,t), w1
of there arguments. b, by, k = 1,
interval (0, 7.

In what follows, we assume that problem (1)-(3) has a unique solution.

(t

) ( ), c1(x), ca(x), p(x)—are known continuous functions
2,...,m are real numbers, t;, k = 1,2,...,m are points of the

3 Replacement of integral conditions

Consider first of conditions in (2) and differentiate with respect to ¢ :

! Uu\x
[ a5 e = o),

Hence, by virtue of equation (1), we have:

l
/0 c1(x) [E)aa: <k( )gZ) + bu(x,t —i—Zbku (x,tk) + f(x, t)] do = u)(t), (4)

k=1

Applying twice the formula for integration by parts to the integral of the first term, we
obtain:

=l

/Oz cl(m)% (k(x)gg d = ey (2)k(z) auég;, 0

’

l
—I-/O (i (z)k(2)) u(z,t)dz.

Using notation C(z) = (¢} (z)k(x))", the last equality can be rewritten as follows:

/Ol cl(:c);x (k(@?;) dz = c1(z) k() 3ué:;, £)

Finally, applying the trapezoidal formula to the last integral on the right-hand side, we
obtain the equality

/Oz cl(x)a% (k(x)gg 4 = ey (2)k(z) auég;, 0

=l

_ l
- c’l(x)k:(x)u(x,t){i:é—}-/o Ci(x)u(z,t)dx

z=0
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Cl(.%'o)
2

w(zo, t) + Cr(z)u(@e, t) + - -+ Crlzn_1)u(zy_1,t)+ Cl(;N)

+h - [ u(zn,t)| +0 (h?).

Taking into account this equality in (4), after elementary transformations, we get the follow-
ing equality:

u(wo, 1)+ Cr(zr)u(z, t) + - -+

+C'1(JUN,1) . u(ﬂfol,t) + Cl(mN)

u(zy, t)} = py (t) — b (t Z brper (tg

!
—/0 e1(2)f (2. t) + O (1) . (5)

Similarly, we have

=l

ou(x,t)

calo)hlw) S

u(wo, 1)+ Cozr)u(zy, t) + - -+

=0

+ Co(zy_1)u(zn_1,t) +

C

!
—/0 ea(@)f (z,8) + O (h?), (6)

here Cy(x) = (ch(x)k(x))" .
And so, instead of integral conditions (2), we obtained conditions (5) and (6).

8U(l t) , then 8“(0 t) , then instead of these

If we exclude from the conditions (5) and (6), first
conditions we get the conditions

ou(0,1)
Ox

(€1(0)e2(l) = e1(1)e2(0)) £(0) = (1(0)e2(l) = e1(D)c5(0)) k(0)u(0, 8)+

+ (& Wea(l) — 1)) k(Du(l,t) + h [Cl(”c?(“) 5 Gilzo)eall)

+ (e (D)C2(21) = Crlxr)e2(D)) wlar, t) + - - + (e (D) C2(wn—1) — Cr(zn—1)c2(l)) u(zn-1, 1)+

u(zo, )+

+01(l)02(90N) — Ci(zn)e2(l)
2

(c1(0)ealt) = e1)ea(0) k) P52 — (4 (0)eal0) = 2 (0)ch(0)) KO)u0, )+

H D) - aOG0) k.o + 1 [ HOREZClmIR0)

+ (€1(0)Ca(z1) — Cr(z1)e2(0)) ul(z, ) + - - - + (c1(0)C2(zn-1) — Cr(zn-1)c2(0)) u(zN-1, )+

u(xN,w] (6 +0 (), ()

u(zo, t)+

+ C1 (O)CQ(I‘N) — Cl (:CN)CQ(O)
2

u(xN,t)] = is(t) + O (h?), (8)

where

() = er(Dpa(t) — c2(D () + b (ea(pa (1) — er(Dpa(t)) + ea(l) D i (B1) —
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l l

—c1(1) Z bipa(ty) + c2(l) / c(z) f(z, t)dr — ci1(1) / co(z) f(x, t)dz,

k=1 0 0

fia(t) = c1(0)pa(t) — c2(0)y (1) + b (c2(0)pua (t) — e1(0)pa(t)) + c2(0 Z bipa (B

l l

—c1(0) > bepa(fe) + c2(0) / er(z) f(z, t)dx — ¢1(0) / o) f(x, t)da.

k=1 0 0

Suppose, that ¢1(0)ca(l) — c1(1)e2(0) # 0. Then, dividing both sides of equalities (7) and (8) by
this expression, we obtain:

0u(0.t) & (0)esll) — er(Deh(0) e (Dea(l) — en(D)eh)

000 ~ a@a® - ae©" "0 60wl —abeo) O
Cl(l)Cg(Io) Cl(l‘o)CQ(l) Cl(l)CQ(.’E ) - 01(581 Cg(l)

2 @l —a®e) DT T 0l —abe@) “CrD T

N
Cl(l)CQ({L‘N ) Cl(wN 1)62([) C1
e O)eall) — ey N

du(l,t) 1 (0)e2(0) — ¢1(0)c4(0) A (1)e2(0) — 1 (0)dh (1)
k(D) ox c11(0)02(l) — cl(l)c;(O) K(0)u(0, ) + Ci(O)CQ(Z) — cl(l)CQQ(O)R(Z)u(l’t)+
c1(0)Ca(z0) — Ci(z0)c2(0) Ca(z1) — Ci(z1)e2(0)

)
2 @O0l —ale@) c1(0)e2(l) — 1 (1)2(0)
(

u(zy, t) + -+

1(0)Ca(zn—1) — Ch(zN—1)C2 0)u(;1; B+ c1(0)Ca(zn) — C’1($N)cz(0)u($ | =
c1(0)ex(l) — e1(1)ea(0) T 200 0) - al)e )
= fia(t) + O (n?) (10)
where _ =
2 ) = fi1(t) Aa(t) = f2(t)

C1 (O)CQ(Z) — Cl(l)CQ(O) ’
From Taylor formula we’ll get:

k(m)auéi’t) = k(0) 8“;2’” e [aax <k(x)auéz’t)>]zzo +0(2?).

Taking in this equality = = h , we can easily obtain the validity of the equality

k(o)aug;,t) . (/;) u(xl,t)h—u(O,t) _g [aax <k<$)aﬁ?)]m:0+0 ).

By the same way, we obtain the validity of the equality

w2400 _ (z - h) u(en.t) ~ulay-1,t) | b [ ) <k<x)8u(x,t)>]z:l Lo,

ox 2 h 2 | oz ox

Assuming the fulfillment of equation (1) on the boundaries z = 0 and = = [ of the domain
D, from the last two equalities we obtain:

k0210 _ <h> u(z1,t) —u(O,t)_;L lﬁu((a(i,t)

o) - — bu(0,t) Zbku()tk 0,t)|+0 (h?),
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k(l)ﬁugi t) e (l B g) u(zy,t) —hu(xN_l,t)+
h | Ou(l, m B
+§ [ ét t) — bu(l,t) — l;bku(l,tk) —f, 0 +0 (h2) .

Taking into account these equalities in (9) and (10), correspondingly, we arrive at the equalities

k <Z> “(“’t)h_“(o’t) —g [augi D bufo, 1) Zbku (0,t) — f(0,8)| —
¢ 0)eal) — e (D (0) A eall) — 1D ()
e (0)eal) —erDea(0) " O 0)eal) s (Dea(o) DT
c1(1)Co(xo) — Cr(zo)ca(l) c1(D)Co(x1) — Cr(z1)c2(1)
h [2 (@)l —ae0) 0 T T @eal) —a(eao) DT
Cl(l)CQ(CCN_l) — Cl(ajN_l)CQ(l) cl(l)Cg(a:N) — Cl(IEN)CQ(l)
A 0al) —ae©) U T 00l —al)e©) “(”’”} -

1(t) +0 (h?) (11)

i
] (l B h) u(xn,t) —hu(:L‘N—1,t) n g 8uéi, t) —bu(l,t) — ibku(l,fk) _ f(l,t)] _

 1(0)e2(0) — e1(0)c5(0) &, (1)ea(0) — e1(0)cy (1)
& )el) — D) DT G )0 —abeo) VT
c1(0)Ca(z) — C1(z0)c2(0) H(0)Ca(x1) — Cy (21)e2(0)
+h [ 2(c1(0)ea(l) — e1(l)e2(0)) u(wo,t) + 1 (0)e2(l) — a1 (1)ea(0) u(zy,t) + -+
c1(0)Ca(zn—1) — Ci(xn—-1)c2(0) c1(0)Calay) — Ch(zy)ea(0) -
T a0e) —abe® )T S 000 - ale) (xN’t)] B
where

4 Difference problem

Divide the segment [0, 1] of the axis Ox by points =, = nh, n =0,1,2,..., N, h = /N, into N
equal parts, and the segment [0,T] of the axis Ot by points t; = j7, j = 0,1,2, ..., jo, 7 = T/ jo,
into jp equal parts. We choose the step 7 in such a way that the points tx, k = 1,2, ..., m, are
among the points t; = j7, j = 1,2,..., jo. Suppose, that t, =t;,, k=1,2,...,m, t; <tj <..<
t;,.- Define in the domain D a grid @p, = {(@n, t;), n=10,1,2,..,N,j =0,1,2, ..., jo}.

Using instead of integral conditions (2) the last non-local conditions (11) and (12), to problem
(1) - (3) on the grid wy, we can associate the following difference problem:

- A 11 1 . : +1 j
hu_}k h vl =y —l—y{_yé _h bu+§:bkyjk +
2 7 2"\ 2 h h 2 2 =

j+1
] + yN
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)= Cilmer() w" b, al)Caen) — Gz v + 4
l )) 2 Cl(O)CQ(Z) — Cl(l)CQ(O) 2
() Yo+ N1 al)Oa(en) — Crlan)e) v + vk

- +
)e2(0) 2 2 (e1(0)ea(l) — ex()e2(0)) 2

= fi

A N O GRS et /A Rl LA 91 A A At
2"\ h? Ty h?

7+1 .
byn +yn Zb y]k = nv n=12.,N-1, (13)

[ e 1 h J+1_ g+l I h JHL g m ,
Yn Z/N+k<l_> (yN hyN 1+?JN hqu -2 byN +yN+Zbk:y§\'? _

(0)e2(0) = 1 (0)y(0), T oyl h(D)ea(0) = ea(0)h (D), o yh T+ Yk

Cl(O)CQ(Z) — C1 (Z)CQ(O) k(O) 2 ) * 01(0)62(1) —C1 (l)CQ(O)k(l) 2 +
c1(0)Ca () — C1(w0)e2(0) y T + 43 1(0)Ca(w1) — Cr(a1)e2(0) yit" + o] .

h [ 2l —al)m0) 2 a®el) —al)em) p T
L OO (n 1) = Cilen Do) Y"1+ U a0)Cole) = Cilen)ea(0) v +uh | _
c1(0)e2(1) — e1(1)ea(0) 2 2 (c1(0)e2 (1) — e1(1)e2(0)) 2
- ]J\Iv J = 07 17 »JO 17
0 =o(x,), n=0,1,..,N, (14)
where

, - h . h
13 :—ul(tj+0,5r)+§f(0, tj +0,57) , f{vzug(tj+0,5¢)+§f(l, tj +0,57) ,

= f(xn, tj+0,57), n=1,2,..,N — 1.

It should be noted that the difference problem (13)-(14) approximates problem (1)-(3) with
an accuracy O (h? + 72) , if the solution u(z, t) of problem (1) - (3) has bounded partial deriva-
tives into domain D with respect to the variable z up to the fourth order , and with respect to
the variable ¢ up to the third order and equation is fulfilled both on the boundaries z = 0 and
x = [ of domain D.

The solution of difference problems of the form (13)-(14) is described, for example, in (2020
b) by the author. Therefore, we will not dwell on solving this difference problem.

5 Maximum principle and consequences

Consider the difference problem (13)-(14) and prove the validity of the following theorem (max-
imum principle) with respect to the solution of this problem.

Theorem 1 (Maximum principle). Let the grid functionyﬁ;, n=0,1,...N,j=0,1,..., jo, satis-
fies problem (13)-(14). Let the conditions f; <0 (f7 >0),n=0,1,....N,j =0,1,....,50 — 1 are
satisfies. If the following conditions are fulfilled

0 <ho<k(x) <k, bp>0, k=1,2,..,m, b+ Y b <0,
k=1
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= 2* el = a0 =®
SO~ e 0es 0 ~ D)~ a0 O 2>
Ol =00 ~ O = e Do) 1O 29 >0 15)
rmin {2 [+ B e S0
Al ] _1} |

Then solution yr;, n=0,1,. 1 =0,1,...,Jo, of the problem (13)-(14), differ from constant,
cannot take the largest posztzve (smallest negative) value at n =0,1,.... N, j =1,2, ..., jo.

Proof. Let prove the first part of the theorem. Suppose f% <0,n=0,1,...,N, 7=0,1,...,j0—1,
and conditions (15) are satisfied, but the solution y;, of the problem (13)-(14) takes the largest
positive value at n =mng, j=i+1, 0<ng < N, 0<i<jg—1:
i+1 — 7 - M
o = ocndNiozi<io " >0

Suppose, that 0 < ny < N. Without loss of generality, we can assume that yffgl > yf;gil.

Consider the difference equation in (13) at n = ng, j =

no = 2h2k<x"’0 2)yn0—1+<7+2h2k(x”0+2)+2h2k<x”° 2) 2) Yno

1 hY it hy i
_Wk <$no + 2) Ynog+1 — ﬁk <$n0 - 2) Yng—1t+

+<—1+1k<$n —i—h)-l-lk(:):n —h> —b>-

T 2h? o2 2h? ° 2 2

-yﬁm - %kz <acn0 > yn0+1 Zbky]’“ > _Wk <xn0 - g) M + (1 + %hzk <:17n0 + Z) +
—1-21h2k'<:vn0—g> —12)) M-

—#k <$nO+Z>M—2;2k (an—Z>M+ (—i+222k <xn0+g>+

1 h b 1 h - “

2h 2
k=1

m .
since by the hypothesis of the theorem b+ - by < 0. This contradicts the condition f;, < 0.
k=1

Suppose, that ng = 0. Without loss of generality, we can assume that y’+
the first equation in (13) at j = i:

B (ot (2) 12 o —ee) 8 (o 2t (3) 14
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k(0) ¢ (0)ca(l) — 1 (1)ch(0)\ , 1 h\ 1
"2 ael) = cl<z>c§<o>> T <2> nt g < > Zb’“y

AWea(l) —er(Dch(1) , 1 yn "+ c1(l)Ca(zo) = Cr(wo)ea(l) o™ + yi
— k(1) —h +
C]_(O)CQ(Z) — C1 (Z)CQ(O) 2 2 (Cl (O)Cg(l) — Cl(l) 2(0)) 2
c1()Ca(@1) = Cr(an)ea() yi™ + o +og alCen—) = Cilzy-1)eal D Yn-1+ ?J§V—1+
c1(0)ez(l) = e1(1)e2(0) 2 c1(0)ez(l) = e1(1)e2(0) 2
ca(DCs(xn) = Cr(zn)ea(l) yi ' + Y
2 (Cl (O)Cg(l) - 01(1)02(0)) 2
Hence, under conditions (15), after simple transformations, we obtain:
fiseM—h c1(1)Ca(wo) — Ch(wo)ea(l) yi™ + v N c1())Ca(x1) — Ciar)ea(l) Y™ + yi—l—
2 (01(0)62(l> — Cl(l)CQ(O)) 2 01(0)62(l> — Cl(l)CQ(O) 2
L aleva) — Cilen 1e() U+ Yy L a)Co(aw) = Cafan)ea(l) yy REERA
C1 (O)Cg(l) — C1 (l)CQ(O) 2 2 (61 (O)Cg(l) — C1 (l)CQ(O)) 2
To evaluate an expression in square brackets, suppose that
J —
0<n<N,0<i<io " M.
In this case, replace & vi o through M, if Cl£ )(C)Zc(j(’“l) Cl((;)rc’;)(cg)(l) 0, k=0,1,..., N, and through

M otherwise. After that denoting the sum of all the terms in these brackets through aM from
the previous inequality, we obtain: f& > eM — haM = (¢ — ah)M > 0, if « < 0, but if a > 0,
then this inequality takes place at h < £. This contradicts the condition fj < 0.

i+1 1+1

Suppose, that ng = N. Without loss of generality, we can assume that yy~ > yy_;. Consider

the last equation in (13) at j = i:

(b B\ bh kD) D) — OGO i (b 1. (, h
fN‘( 2h’“<l 2> PR cl<o>cQ<z>—cl<l>cQ<o>>W (27 2h’“<l 2>+

bh k(1) (1)c2(0) — 1 (0)ch(1)\ ;, 1 h\ h
T T a0)al) ci(l)cj(())) TR (l B 2) yNtll_%k (l )yN 1 Zb’“y

~ (0)e2(0) = e1(0)ch(0), - wht + w c1(0)Ca(z0) — Ci(wo)e2(0) yh™ + v

) lea O b S et ety e

c1(0)Ca(z1) — Cr(21)e2(0) Yt + 4t L c1(0)Co(xn_1) — Chlzn_1)ca(0) YNy + y§V—1+
c1(0)ca(l) — c1(1)e2(0) 2 c1(0)ca(l) — c1(1)c2(0) 2

c1(0)Cy(zn) — Ci(zn)e2(0) yi ' + vy
2 (01 (O)CQ(Z) — Cl(l>62<0)) 2

From this, as in the case ng = 0, under conditions (15) we obtain:

; c1(0)Ca(0) — Ci(wo)e2(0) yo™ +wh | €1(0)Ca(x1) — Cr(1)e2(0) ¥ + i
vz M el —ae0) 2 T a®ed-abae0) 2 T
. +Cl (0)02(&3]\[_1) — Cl(m'N_1)02(0> yﬁ,ll + ij_l +61(O)CQ(.%'N> — Cl(xN)CQ(O) e + yN
C1 (O)Cg(l) — Cl(l)CQ(O) 2 2 (01(0)62<l) — Cl(l)CQ(O)) 2 o

>6M + hBM = (0 + h)M > 0, at > 0. Otherwise, at h > —%.
The first part of the theorem is proved. The second part of the theorem can be proved in a
similar way. 0
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Theorem 2. Suppose, that grid function y%, n=20,1,...N, 7 =0,1,...50, satisfies to problem
(13) - (14). If f1 <0, @(zn) <0 (f,% >0, g(an) > 0) n=01...Nj=01,..j—1 and

conditions (15) are satisfies, then vy, < 0 (yﬁl > 0) ,n=0,1,...,N, 7=0,1,...5.
The correctness of the statement of this theorem follows from the maximum principle.

Consequence. Let conditions (15) are satisfied. Then the homogeneous problem corresponding
to problem (13)-(14) has only the trivial solution y5, =0, n=0,1,...., N, 5 =0,1,..., jo.

It follows from this corollary that under conditions (15) there exists a unique solution to the
difference problem (13)-(14).

Theorem 3 ((Comparison theorem)). Suppose, that v, n=0,1,..,N, j=0,1,..jo — solution
of the difference problem (13)-(14) and g7, n = 0,1,...,N,j = 0, 1,...j0 —solution of the difference
problem obtained by replacing in (13)-(14) the functions

f%, n=201.,N, 7 =012..,75 —1, and p(z,),n = 0,1,..., N, correspondingly, by
fln=01,.,N,j=01,2.jo—1, and G(n),n = 0,1,..., N. Then, if )fﬁ‘ < fln=
0,1,...N, j=0,1,....50— 1, and |p (z,)| < @ (zn), n=0,1,...,N, then under conditions (15)

inequalities ‘yﬂl < g]%, n=0,1..,.N, j=0,1,..., jo take place.

Remark 1. The set of functions k(z), c1(x), ca(x),satisfying conditions (15) is not an empty
set. Really, suppose, that

l=1, c(x) = % (—$3 +22 42+ 1), cfz) = —72% + 112% — 4z — %
Then
dea) —aMbl) o d0)e0) - aO)b0)
01(0)62(1) — 01(1>02(0 ’ 01(0)62(1) — 01(1)02(0) ’
c1(0)e2(1) — a1 (1)c5(0) _ 15, 1 (1)e2(0) — a1 (0)ch(1) 6.

A0)ea() —ar()eh(0) o GWea) — e,
C1 (0)02(1) - 01(1)62(0) C1 (0)02(1) - 01(1)62(0)

A0)ea(0) ~ 1O, A(0)ea(0) — a (0)ch(0)
c1(0)ea(1) — 61(1)02(0)k(1) N k

We require the fulfillment of the inequalities
15k(0) — 12k(1) > £,6k(1) — 7k(0) > 6,
where € > 0, § > 0 —arbitrary numbers. From the last two inequalities, we get that

Te + 156

B(0) 2426, k(1) 2

This means that the set of functions k(x), ci(x), co(x), satisfying the conditions (15) is,
indeed, not an empty set.
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6 Convergence
In the grid domain wy, we define the grid function 2 by the equality
2 = yh —u(zn,tj), n=0,1,.,N, j=0,1,....jo,

where 3, solution of the difference problem (13)-(14), u(zy, tj)- the value of the exact solution
to problem (1) - (3) at the grid point(zy, t;) of grid wy,. If we substitute the expression v found
from the last equality in the difference problem (13) - (14), then with respect to the function 2}
we obtain:

i1y . i1 i1 . . i1 . m
ﬁz(]ﬁ _Z(J)_}k <h> (Z{Jr ;Z(J]Jr +Z{;Z(J)> _Z<bw+zbkzgk>+

2 T 2 2
k=1
A (0)ca(l) —ex(Dh(0), 2™ +2)  hDeall) —ea(D(l) , 2+ 2
+Cl (O)Cg(l) — Cl(l)CQ(O) k?(O) 2 C1 (O)Cg(l) — Cl(l)CQ(O) k(l) 2
 [a)Ca(wo) = Cr(mo)ea(l) 2 +2  all)Ca(ar) — Cr(w)ea() 21 + 2]
" {2 @Ol —aBe0) 2 a0el-abe0 2 "
LalOen) = Ciley o) A0 +2v | ab)0y) ~ Cilaved) A+ ] _
Cl(O)Cg(l) - Cl(l)CQ(O) 2 2 (Cl(O)CQ(Z) — (1 (Z)CQ(O)) 2 0’
A R\ 20—t 2~ AN AR A
- — §k (acn + 2) +1 % +1 + ik <xn - 2> IhQ L
A &, :
—bT—Zbkzﬂf =) n=1,2,..,N -1, (16)
k=1
g+l g+l o e - m
szvHT—va %k <l_f2z> (ZN . N-1 | AN hN1> _g (b 5v+12+ N +;b zf{;) _
& (0)ea(0) — 1 (0)y(0) 2T 420 h(1)ea(0) — er(0)ey (1), 2N+ 2
Cl(O)Cg(l) — Cl(l)CQ(O) ]C(O) 2 + C]_(O)CQ(Z) — C1 (l)CQ(O) k(l) 2
c1(0)Ca(z0) — Ch(z0)c2(0) 2T+ 20 1(0)Co(xy) — C(x1)ea(0) 27T + 27
h [ @Ol —alo0) 2 aled _aleo) 2 T
L 1(0)Ca(an 1) = Cafan1)ea(0) AL+ a(0)Chlen) — Cr(an)ea(0) 24 + 24 ]
c1(0)ea(l) — e1(1)e2(0) 2 2 (c1(0)ea(l) — c1(1)e2(0)) 2 N
=l 5=0,1,...,50 — 1,
22 =0, n=0,1,...,N. (17)

here 4%, n = 0,1, ..., N — determine the error of approximation of the difference problem (13)-
(14). The right-hand sides of difference equations (16) satisfy the estimate

Wi < L(h*+7%), n=0,1,..,N, j=0,1,... 50— 1,

where L > 0is a constant.
Let’s define the grid function

2 = L¢ (W2 +72) (2l — ap), n=0,1,..,N, j=0,1, ..., jo, (18)

187



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

on the grid wy,, where £ > 0, Iy > [ are constants. Obviously, #is a positive function. For
this function, under conditions (15), after simple transformations we have:

I TR i m
[E A B (AN W S ALY (e B A
2 T 27\ 2 h h 2 2 £

> L¢ (h? + 77) [k: (Z) +2le — hal} >L(K+17%), (19)

at € > [/{ (%) + 2l1e — hoq] -t . Here o is the value of the expression in square brackets.

m
Let 0 < n < N. Suppose, that b+ > by < —B < 0. Then for this function we get:
k=1
gz 1 ( h) I A PVl A ) <x - h) C N e
n

n
Tk - el i
- 57\ #nt g 12 2 2 12

P
Zn 4z,

5 bpzlk = LE (W + 72)

K (xn) — (20 — ) (b + bk>
k=1 k=1

> L& (W2 +72) [K(zn) + (20 —)B] > L (B2 +72) ,

: : / 1
if Og}:fd [k'(x) + (211 = 1)B] > 0 and £ > ()<iI;f<l[k/(I)+(2l1_l)B].

—b > (20)

y . T s
ﬁZgV—H_Z]N_’_lk l—ﬁ ng —z{v_l_i_zgv—zgv_l _E bzgv‘*‘ +Z?V+ib sk | _
2 1 2 2 h h 2 2 RN

188



Z.F. KHANKISHIYEV: SOLUTION OF ONE PROBLEM FOR LINEAR LOADED PARABOLIC TYPE...

h h - i (De2(0) — e1(0)h(1)
-+(1-3) -gen-o <b+,;bk> 21 (S G DO
0)e(0) — a0)h0), N dl)ea(0) = e (0)()
e1(0)e2(D) — e1(1)eal0 >"'(°)> : ’

e1(0)Ca (o) — i (10)e2(0)

h ( 2 (c1(0)ea(l) — e1()eal0)
Cl(O)CQ(IEN, ) Cl(SUN 1)
c1(0)ea(l) = e1(1)e2(0)

= L¢ (B2 4 77)

—C
—C

20 +

_l’_

> L¢ (h* +7°) [k: <z> + 20— o

> L(K*+1%), (21)

since, by the condition § > 0 and by choosing l;, it is possible to ensure that the value of the
expression in square brackets is greater than zero. Therefore, if we denote this value by~y, then
if &> %, we obtain the validity of inequality (21).

On the other hand, we have the equality

20 =L¢(h*+77) (2l —xp), n=0,1,..,N, j=0,1,.... 5. (22)

Comparing problem (16)-(17) with problem (19)-(22), by virtue of the comparison theorem we
have:
2] <Z, n=0,1,.. N, j=0,1,2,..., jo,

or

) — w(@y, ;)| < LE (R +72) -2, n=0,1,...,N, j=0,1,..., jo. (23)
So we have the following

Theorem 4. Let the solution of equation (1) in domain D = {0 <x <, 0 <t <T} have
bounded partial derivatives with respect to variable x up to the fourth order and with respect to
t up to the third order, and this equation is fulfilled both on the boundaries x = 0 and x = |

— m
on the domain D. If conditions (15) and b+ ) by, < —B < 0 are satisfied, then the solution
k=1

of the difference problem (13)-(14) converges to the solution of the problem (1)-(3). Moreover,
estimate (23) holds.

7 Conclusion

In this paper, the method of finite differences is applied to the solution of a problem for a linear
loaded differential equation of parabolic type with integral conditions. Using the trapezoidal
method, the integrals included in the integral conditions are replaced by integral sums, and as
a result of such a replacement, instead of integral conditions, non-local boundary conditions
are obtained for the equation under consideration. A difference problem that approximates
the problem with new boundary conditions with the second order of accuracy is constructed.
Further, under certain conditions, the maximum principle and some other theorems are proved
for the solution of the difference problem. Based on these theorems, we prove the convergence
of the solution of the constructed difference problem is proved and an estimate for the rate of
convergence is obtained. The method applied to the solution of the problem under consideration
can be used to solve more general problems for equations of parabolic and hyperbolic types.
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